Commun. Korean Math. Soc. **27** (2012), No. 3, pp. 483–488 http://dx.doi.org/10.4134/CKMS.2012.27.3.483

P-STRONGLY REGULAR NEAR-RINGS

P. DHEENA AND C. JENILA

ABSTRACT. In this paper we introduce the notion of P-strongly regular near-ring. We have shown that a zero-symmetric near-ring N is P-strongly regular if and only if N is P-regular and P is a completely semiprime ideal. We have also shown that in a P-strongly regular near-ring N, the following holds: (i) Na + P is an ideal of N for any $a \in N$. (ii) Every P-prime ideal of N containing P is maximal. (iii) Every ideal I of N fulfills $I + P = I^2 + P$.

1. Introduction

Throughout this paper, N denotes a zero-symmetric right near-ring. A right N-subgroup (left N-subgroup) of N is a subgroup I of (N, +) such that $IN \subseteq I(NI \subseteq I)$. A quasi-ideal of N is a subgroup Q of (N, +) such that $QN \cap NQ \subseteq Q$. Right N-subgroups and left N-subgroups are quasi-ideals. The intersection of a family of quasi-ideals is again a quasi-ideal.

N is called regular, if for every element a of N there exists an element $x \in N$ such that a = axa. Let P be an ideal of N. Then the near-ring N is said to be a P-regular near-ring if for each $a \in N$, there exists an element $x \in N$ such that a = axa + p for some $p \in P$. If P = 0, then a P-regular near-ring is a regular near-ring. Here the notion of P-regularity is a generalization of regularity. There are near-rings which are P-regular but not regular.

V. A. Andrunakievich [1] defined P-regular rings and S. J. Choi [3] extended the P-regularity of a ring to the P-regularity of a near-ring. In this paper we introduce the notion of P-strongly regular near-ring and obtain equivalent conditions for a near-ring to be P-strongly regular. We also introduce the notions of P-prime ideals and P-near-ring in this paper. I. Yakabe [7] characterized regular zero-symmetric near-rings without non-zero nilpotent elements in terms of quasi-ideals. In this paper we characterize P-strongly regular near-ring in terms of quasi-ideals. For the basic terminology and notation we refer to [6].

 $\bigodot 2012$ The Korean Mathematical Society

Received April 27, 2011.

²⁰¹⁰ Mathematics Subject Classification. 16Y30, 16Y60.

 $Key\ words\ and\ phrases.$ $P\mbox{-regular},\ P\mbox{-strongly}\ regular,\ P\mbox{-prime}\ ideal,\ completely\ semi-prime\ ideal.$

This research work is supported by UGC under the major research project No. F 34-153/2008(SR).

2. Preliminaries

Definition 2.1. An ideal P of N is called completely semiprime if for any $a \in N, a^2 \in P$ implies $a \in P$.

Definition 2.2. An element $e \in N$ is called an *P*-idempotent if $e - e^2 \in P$.

For any non-empty subsets A, B of N, we write $\{n \in N \mid nB \subseteq A\}$ as (A : B).

Lemma 2.3 ([6], Proposition 1.42). If A is an ideal and B is any subset of N, then (A : B) is a left ideal of N.

Lemma 2.4 ([2], Proposition 3.5). Let P be a completely semiprime ideal of N. Then $ab \in P$ implies $ba \in P$ and $aNb \subseteq P$ for any $a, b \in N$.

Lemma 2.5. If P is a completely semiprime ideal of N, then (P : S) is an ideal of N for any non-empty subset S of N.

Proof. By Lemma 2.3, (P : S) is a left ideal of N. Let $x \in (P : S)$. Then $xS \subseteq P$ implies that for any $s \in S$, $xs \in P$. Thus $sx \in P$. Let $n \in N$. Now $(xns)^2 = xn(sx)ns \in P$. Since P is a completely semiprime ideal, $xns \in P$. Then $xnS \subseteq P$. Hence (P : S) is an ideal of N.

Lemma 2.6. Let P be a completely semiprime ideal of N. If $a \in N$ is an P-idempotent, then for any $n \in N$, an = ana + p for some $p \in P$.

Proof. Let $a \in N$ be an *P*-idempotent. Then $a^2 = a + p_1$ for some $p_1 \in P$. Let $n \in N$. Now $(an - ana)a = ana - (an(a + p_1) - ana + ana) = p_2$ for some $p_2 \in P$. By Lemma 2.4, $an(an - ana) \in P$ and $ana(an - ana) \in P$. Thus $(an - ana)^2 \in P$ implies that $an - ana \in P$. Hence an = ana + p for some $p \in P$.

3. *P*-strongly regular

Definition 3.1. A near-ring N is said to be strongly regular if for each $a \in N$, there exists an element $x \in N$ such that $a = xa^2$.

Now we introduce *P*-strongly regular near-ring.

Definition 3.2. A near-ring N is said to be P-strongly regular if for each $a \in N$, there exists an element $x \in N$ such that $a = xa^2 + p$ for some $p \in P$.

If P = 0, then a *P*-strongly regular near-ring is a strongly regular near-ring. If *N* is strongly regular, then *N* is *P*-strongly regular for all ideals *P* of *N*. But *P*-strongly regular near-ring for any ideal *P* of *N* need not be strongly regular near-ring as the following example shows.

Example 3.3. Let $N = \{0, a, b, c\}$ be the Klein's four group. Define multiplication in N as follows:

•	0	a	b	c
0	0	0	0	0
a	0	0	0	a
b	0	a	b	b
c	0	$\begin{array}{c} 0 \\ 0 \\ a \\ a \end{array}$	b	c

Then $(N, +, \cdot)$ is a near-ring (see Pilz [6], p. 407, scheme 8). Here the ideals are $\{0\}, \{0, a\}$ and N. Let $P = \{0, a\}$. Clearly N is P-strongly regular but not strongly regular since $a \notin Na^2$.

Theorem 3.4. N is P-strongly regular if and only if N is P-regular and P is a completely semiprime ideal.

Proof. Assume that N is P-strongly regular. Suppose that $a \in N$ such that $a^2 \in P$. Since N is P-strongly regular, there exists $x \in N$ such that $a = xa^2 + p_1$ for some $p_1 \in P$. Then $a \in P$. Thus P is a completely semiprime ideal. Let $a \in N$ such that $a = xa^2 + p$ for some $p \in P$. Now $(a - axa)a = a^2 - (a(a - p) - a^2 + a^2) = p_2$ for some $p_2 \in P$. By Lemma 2.4, $a(a - axa) \in P$ and $axa(a - axa) \in P$. Then $(a - axa)^2 \in P$ implies that $a - axa \in P$. Thus $a = axa + p_3$ for some $p_3 \in P$ and hence N is P-regular. Conversely, assume that N is P-regular and P is a completely semiprime ideal. Let $a \in N$ be such that a = axa + p for some $x \in N$ and $p \in P$. Thus xa is an P-idempotent. Now a = (axa + p)xa + p = a(xax)a + p' for some $p' \in P$. By Lemma 2.6, $a = a(xaxxa + p'')a + p' = a(xax^2a^2 + p_1) + p' = a(xax^2a^2 + p_1) - axax^2a^2 + axax^2a^2 + p' = axax^2a^2 + p'''' = ya^2 + p'''$ for some $p_1, p'', p''' \in P$ and $y = axax^2 \in N$. Hence N is P-strongly regular. □

Definition 3.5. An ideal A of N is said to be prime if $BC \subseteq A$ implies $B \subseteq A$ or $C \subseteq A$ for ideals B, C of N.

Definition 3.6. An ideal A of N is said to be P-prime if $BC + P \subseteq A$ implies $B \subseteq A$ or $C \subseteq A$ for ideals B, C of N.

If A is a prime ideal, then clearly A is a P-prime ideal for any ideal P. Now we give an example of a P-prime ideal but not prime.

Example 3.7. Let $N = \{0, a, b, c\}$ be the Klein's four group. Define multiplication in N as follows:

·	0	a	b	c
0	0		0	0
$a \\ b$	0	$a \\ 0$	0	a
	0		b	b
c	0	a	b	c

Then $(N, +, \cdot)$ is a near-ring (see Pilz [6], p. 407, scheme 7). Here the ideals are $\{0\}, \{0, a\}, \{0, b\}$ and N. Let $P = \{0, b\}$. Clearly $\{0\}$ is P-prime but not prime since $\{0, a\} \{0, b\} \subseteq \{0\}$ but $\{0, a\} \notin \{0\}$ and $\{0, b\} \notin \{0\}$.

Theorem 3.8. Let N be a P-strongly regular near-ring. Then

- (1) Na + P is an ideal of N for any $a \in N$.
- (2) Every P-prime ideal of N containing P is maximal.
- (3) Every ideal I of N fulfills $I + P = I^2 + P$.

Proof. (1) Assume that N is a P-strongly regular near-ring. By Theorem 3.4, N is P-regular and P is a completely semiprime ideal. Let $a \in N$. Now $a = axa + p_1$ for some $x \in N$ and $p_1 \in P$. Then xa is an P-idempotent. Now for any $n \in N$, $na = n(axa + p_1) - naxa + naxa = naxa + p_2$ for some $p_2 \in P$ implies that $na \in Nxa + P$. Thus $Na + P \subseteq Nxa + P$. Clearly $Nxa + P \subseteq Na + P$. Therefore Na + P = Nxa + P. Let $S = \{n - nxa \mid n \in N\}$. Now for any $n \in N$, $nxa = nx(axa + p_1) - nxaxa + nxaxa = nxaxa + p_3$ for some $p_3 \in P$. Thus $(n - nxa)Nxa \subseteq P$ implies that $Nxa(n - nxa) \subseteq P$. Therefore $Nxa + P \subseteq (P : S)$. Let $y \in (P : S)$. Then $yS \subseteq P$. Thus $y(y - yxa) \in P$. Since P is completely semiprime, $(y - yxa)y \in P$. Therefore $y^2 = yxay + p$ for some $p \in P$. Since N is P-strongly regular, there exists $z \in N$ such that $y = zy^2 + p'$ for some $p' \in P$. Then $zy^2 = y + p''$ for some $p'' \in P$. Now $zy^2 = z(yxay + p) - zyxay + zyxay = zy(xay) + p_1$ for some $p_1 \in P$. By Lemma 2.6, $zy^2 = zy(xayxa + p_2) + p_1$ for some $p_2 \in P$. Thus $zy^2 = zyxayxa + p_3$ for some $p_3 \in P$. Then $y \in Nxa + P$ implies that $(P:S) \subseteq Nxa + P$. Hence (P:S) = Nxa + P = Na + P. By Lemma 2.5, Na + P is an ideal of N.

(2) Let A be a P-prime ideal of N containing P and suppose $A \subset M$ for an ideal M of N. Let $b \in M \setminus A$. Now $b = xb^2 + p_1$ for some $x \in N$ and $p_1 \in P$. Let $n \in N$. Now $nb = n(xb^2 + p_1) - nxb^2 + nxb^2 = nxb^2 + p_2$ for some $p_2 \in P$. Then $(n - nxb)b \in P$. By Lemma 2.4, $N(n - nxb)Nb \subseteq P$. Thus $N(n - nxb)Nb + P \subseteq A$ implies that $[(N(n - nxb) + P)(Nb + P)] + P \subseteq A$. Since A is a P-prime ideal, $N(n - nxb) \subseteq A$ or $Nb \subseteq A$. Suppose $Nb \subseteq A$. Since $b = xb^2 + p_1 \in Nb + P$, we have $b \in A$, a contradiction. Suppose $N(n - nxb) \subseteq A$. Then $n - nxb \in A \subset M$. Since $b \in M$, $nxb \in M$. Then $n \in M$. Thus M = N. Hence A is maximal.

(3) Let I be an ideal of N containing P. Clearly $I^2 + P \subseteq I + P$. Let $a \in I + P$. Since N is P-strongly regular, we have $a = xa^2 + p$ for some $x \in N$ and $p \in P$. Then $a = (xa)a + p \in I^2 + P$. Hence $I + P = I^2 + P$.

Corollary 3.9 ([4], Theorem 5). Let N be a strongly regular near-ring. Then

- (1) Every N-subgroup of N is an ideal.
- (2) Every prime ideal of N is maximal.
- (3) Every ideal I of N fulfills $I = I^2$.

I. Yakabe [7] proved that if a near-ring N is regular, then every quasi-ideal Q of N has the form QNQ = Q. It can be generalized in the case of a P-strongly regular near-ring.

Lemma 3.10 ([3], Theorem 2.6). If N is a P-regular near-ring, then every quasi-ideal Q of N has the form Q + P = QNQ + P.

Definition 3.11. A near-ring N is said to be an S-near-ring, if $a \in Na$ for every $a \in N$.

Definition 3.12. A near-ring N is said to be a P-near-ring, if $a \in Na + P$ for every $a \in N$.

Clearly every S-near-ring is a P-near-ring for any ideal P.

Theorem 3.13. The following conditions are equivalent:

- (1) N is P-strongly regular.
- (2) N is a P-near-ring and for every quasi-ideal Q, $QN + P = Q + P = Q^2 + P$.
- (3) N is a P-near-ring and for any two left N-subgroups L_1, L_2 of N, $(L_1 + P) \cap (L_2 + P) = L_1L_2 + P.$

Proof. (1) \Rightarrow (2) Clearly N is a P-near-ring. Let Q be a quasi-ideal of N. Any element x of QN + P has the form $x = qn + p_1$ for some $p_1 \in P$, $q \in Q$ and $n \in N$. Then $x = (qyq + p_2)n + p_1 = q(yqn) + p_3$ for some $p_2, p_3 \in P$ and $y \in N$. By Lemma 2.6, $x = q(yqnyq + p_4) + p_3 = qyqnyq + p_5$ for some $p_4, p_5 \in P$. Therefore $QN + P \subseteq QNQ + P$. By Lemma 3.10, Q + P = $QNQ + P \subseteq QN + P \subseteq QNQ + P$. Now $Q^2 + P \subseteq QN + P = Q + P$. Let $q_1 \in Q$ and $p_1 \in P$. Now $q_1 + p_1 = q_2nq_3 + p_2 = (q_4 + p_3)q_3 + p_2 = q_4q_3 + p_4$ for some $p_2, p_3, p_4 \in P, q_2, q_3, q_4 \in Q$ and $n \in N$. Thus $Q + P \subseteq Q^2 + P$. Hence $QN + P = Q + P = Q^2 + P$.

 $\begin{array}{ll} (2) \Rightarrow (3) \mbox{ Let } L_1, L_2 \mbox{ be left } N\mbox{-subgroups of } N. \mbox{ Now } L_1L_2 + P \subseteq (L_1 + P) \cap (L_2 + P) \subseteq ((L_1 + P) \cap (L_2 + P)) + P = ((L_1 + P) \cap (L_2 + P))^2 + P \subseteq (L_1 + P)(L_2 + P) + P \subseteq L_1L_2 + P. \mbox{ Hence } (L_1 + P) \cap (L_2 + P) = L_1L_2 + P. \mbox{ (3)} \Rightarrow (1) \mbox{ Let } a \in N. \mbox{ Since } Na \mbox{ and } N \mbox{ are left } N\mbox{-subgroups of } N, \mbox{ we have } Na + P = NaNa + P \mbox{ and } Na + P = NaN + P. \mbox{ So we get } Na + P = NaNa + P = Na^2 + P. \mbox{ Hence } N \mbox{ is } P\mbox{-strongly regular.} \end{array}$

Corollary 3.14 ([7], Theorem 1). The following conditions on a zero-symmetric near-ring N are equivalent:

- (1) N is regular and has no non-zero nilpotent elements.
- (2) N is an S-near-ring and every quasi-ideal of N is an idempotent right N-subgroup of N.
- (3) N is an S-near-ring and for any two left N-subgroups L_1, L_2 of N, $L_1 \cap L_2 = L_1 L_2.$

Proof. If N is regular and has no non-zero nilpotent elements, then N is P-strongly regular.

References

- V. A. Andrunakievich, Regularity of a ring with respect to right ideals, Dokl. Akad. Nauk SSSR. 310 (1990), no. 2, 267–272.
- [2] A. O. Atagun, IFP Ideals in near-rings, Hacet. J. Math. Stat. 39 (2010), no. 1, 17-21.

- [3] S. J. Choi, Quasiideals of a P-Regular Near-Ring, Int. J. Algebra 4 (2010), no. 9-12, 501–506.
- [4] P. Dheena, On strongly regular near-rings, J. Indian Math. Soc. (N.S.) 49 (1985), no. 3-4, 201–208.
- [5] G. Mason, Strongly regular near-rings, Proc. Edinburgh Math. Soc. (2) 23 (1980), no. 1, 27–35.
- [6] G. Pilz, Near-Rings, North-Holland, Amsterdam, 1983.
- [7] I. Yakabe, Regular near-rings without nonzero nilpotent elements, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 6, 176–179.

P. DHEENA DEPARTMENT OF MATHEMATICS ANNAMALAI UNIVERSITY ANNAMALAINAGAR - 608 002, INDIA *E-mail address*: dheenap@yahoo.com

C. Jenila Department of Mathematics Annamalai University Annamalainagar - 608 002, India

E-mail address: jenincc@gmail.com